Type
Sandwich ELISA, Biotin-labelled antibody
Applications
Serum, Plasma-EDTA, Plasma-Heparin, Plasma-Citrate, Cell culture supernatant
Sample Requirements
50 µl/ well
Shipping
At ambient temperature. Upon receipt, store the product at the temperature recommended below.
Storage/Expiration
Store the complete kit at 2–8°C. Under these conditions, the kit is stable until the expiration date (see label on the box).
Calibration Curve
Calibration Range
78–5000 pg/ml
Limit of Detection
7.0 pg/ml
Intra-assay (Within-Run)
CV = 5.3%
Inter-assay (Run-to-Run)
CV = 9.8%
Research topic
Cytokines and chemokines and related molecules
Summary
Angiogenesis is a fundamental physiological process, both during the development of the organism and in adult life, requiring the well coordinated action of a variety of growth factors and adhesion molecules in endothelial cells. So far, VEGF-A (also called VEGF) and its receptors represent the best characterized signalling pathway in developmental and tumour angiogenesis. VEGF-A binds to two receptor-tyrosine kinases: VEGFR-1/Flt-1 and VEGFR-2/KDR. VEGFR-2 is the major mediator of the mitogenic, angiogenic and permeability-enhancing effects of VEGF-A.
The VEGFR’s possess an approximately 750 amino acid residue extracellular domain, which is organized into seven immunoglobulin (Ig)-like folds. This extracellular domain (also called ectodomain) is followed by a single transmembrane region, a juxtamembrane domain, a split tyrosine-kinase domain interrupted by a 70-amino acid kinase insert and a C-terminal tail. Alternative splicing or proteolytic processing of VEGFR’s give rise to secreted variants of VEGFR-2, also called soluble VEGFR-2 (sVEGFR-2). Although the VEGFR’s are primarily expressed in the vascular system, sensitive methods like sandwich ELISA’s have allowed the detection of VEGFR expression in non-endothelial cells like hematopoietic stem cells.
The important role of VEGFR-2 signalling during development and in neo-vascularization in physiological or pathological conditions in vivo has allowed the design of clinically beneficial therapies. A soluble form of VEGFR-2 protein can be detected in human and murine plasma. Studies confirmed that the detected soluble fragment was a truncated form of VEGFR-2, shed from mouse and human endothelial cells.
Since the activation of VEGFR-2 plays an important role in tumour angiogenesis, there is broad clinical interest in monitoring plasma soluble VEGFR-2 levels in cancer patients with a focus on its potential as a surrogate biomarker for disease progression as well as monitoring marker of the efficiency of anti-angiogenesis drugs. Using mouse models with human tumours a reverse relationship could be shown between the levels of sVEGFR-2 and tumour size.
Besides its putative role as a surrogate marker for tumour angiogenesis, naturally occurring sVEGFR-2 is a molecular regulator for VEGF and VEGFR signalling. Further investigations will reveal if sVEGFR-2 can arrest solid tumour angiogenesis and modulate metastasis.
The sandwich ELISA to detect, measure and quantify soluble and solubilized VEGFR-2 levels will help to explain recent clinical results for anti-angiogenic therapy and will allow further understanding of VEGFR-2 as biomarker for monitoring cancer progression and its possible role in modulation of vessel growth.
Instructions for Use (RUO)
Instructions for Use (RUO)
Safety Information (RUO)
MSDS (RUO)
Find documents for the lot